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Abstract--The neutral stability lines obtained from the viscous Kelvin-Helmholtz analysis and the inviscid 
analysis are quite different for the case of low liquid viscosities, whereas they are quite similar for high 
viscosity, contrary to what one would expect. This puzzling result is considered in this work. It is shown 
that the stability behavior regarding the amplification rate is actually almost the same for the two analyses 
for a wide range of liquid viscosities and for various pipe inclinations. The results obtained in the present 
work also support Barnea's interpretation of the viscous and inviscid analyses as a means for predicting 
various transitions from stratified flow. 
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I N T R O D U C T I O N  

Kelvin-Helmholtz (KH) linear stability has been used frequently in the past for determining 
whether a smooth stratified flow is stable or unstable. Two types of KH analyses have been used: 
(1) The viscous Kelvin-Helmholtz (VKH) analysis, which uses the full two-fluid model and takes 
into account the shear stresses (Wallis 1969; Lin & Hanratty 1986; Wu et al. 1987; Andritsos et al. 
1989; Barnea 1991; Crowley et al. 1992); and (2) the inviscid Kelvin-Helmholtz (IKH) theory, in 
which the shear stresses are neglected (Taitel & Dukler 1976; Kordyban 1977; Kordyban & Ranov 
1970; Mishima & Ishii 1980), One would expect that the inviscid theory would be a good 
approximation for liquid of low viscosity, whereas for high viscosities one will have to use the full 
two-fluid model in order to get correct results. Surprisingly the results are just the opposite. For 
liquid of high viscosity the results of the IKH theory are applicable, while there is a large 
discrepancy in the results for the stability criterion between the IKH and VKH theories for low 
liquid viscosity. 

This fact is demonstrated in figure 1. In this figure the neutral stability lines are plotted on a 
ULS VS UGS map to show the regions where stratified flow is stable or unstable. Both theories are 
used, the VKH theory and the IKH theory. As can be seen, for high viscosities the stability criteria 
using the aforementioned theories are almost identical, whereas for low viscosity they are quite 
different. 

This dilemma motivated this work. 

ANALYSIS 

The stability analysis of stratified flow is performed on the "two-fluid model" equations. A brief 
outline of this analysis follows. 

The continuity equations for the liquid and the gas are: 

~t (PLAL) + ~ (pLAL UO = 0 Ill 

and 

cgt ( P c A G )  + ~xx ( P c A c  U o )  = 0. [21 
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The momentum equations for each phase are: 

O OPiL Oh L 
~t (PLAL UL) 4- ~ (PLAL U2) = --'~LSL 4- TiSi -- AL -~X -- pLALg COS fl -~X -- pLALg sin fl 

and 

[3] 

~X 0PiG OhL 
~ ( p c A ~  ~ )  + (p~A~ V~)  = - ~ S ~  - T~S~ - AC-~x - poA~g  cos/~ ~ x  -- -- RGAGg sin ft. [4] 

In the above, A is the cross-sectional area, h is the liquid level or gas gap, P is the pressure, 
U is the axial average velocity, z is the shear stress, S is the perimeter over which r acts, 
p is the phase density and fl is the angle of inclination from the horizontal (positive for 
upward flow). The subscripts L and G denote liquid and gas, respectively; the subscript i denotes 
interface. 

Assuming incompressible flow and combining the two momentum equations by eliminating the 
pressure terms using the approximate relation 

~2h L 
PiG -- PiE = O" OX 2 , [5] 

where a is the surface tension, yields the following 3 equations: 

~hL A L 0U L UL 0hL 
~ ~ ~:~ Tx + Ox =0, [6] 

and 

0hL AGdUG 0hL 0 [7] 
0t a [  0--~- + u~ 0x = 

=F,  

where 

0U L 0U G ~ 0UG ah L 633hL 
P L - ~  -- PG--~i- + pL UL Ux -- PG UG--~X-X 4- (PL -- Po)g cos fl ~--X -- a OX 3 

[s] 

F = Z L S L ' ~ G S G  (! 1) 
----AL 4- ~ 4- TiSi Z ~ -  A-G -- (PL -- PG)g sin fl [9] 

and A~. is dAL/dh L. 
A linearization procedure, which follows the general approach presented by Barnea & Taitel 

(1989), yields 

--f'; -h'~4 d4~L [pLU24 OGU~ --j'rA ]O2~L+ 2[OLUL+oGUGl d2~L 
"'LO'U¢~ + l  "~'L RG (PL--PG)gCOSfl'~L OX2 L RL RG JOtt~x 

fflOL pG-]O2~L [ A OF U G d F  ULOF]O]iL [ 1 OF 1 0 F - ] ~ t  L 

where '~t is the perturbed liquid level and R is the phase holdup. Note that, all the terms in the 
square brackets in [10] are evaluated at the steady state (unlike these terms in [1]-[9], where these 
values are the local transient values). 

Substituting for the perturbed liquid level, 

~L = E e i(=` - kx), [11 ] 

into [10] yields the following dispersion equation for the angular frequency, co: 

oJ 2 -- 2(ak - bi)to 4- ck 2 - -  d k  4 - eki = 0, [12] 
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where 

and 

a = - + [13a] 
P 

! c3F dF 

l _(0LVt 0oV  A) 
c = -P \ - ~ - L  + - - R G  --  (PL --  PG)g COS fl~LL [13C1 

t rA  
d = - - -  [13d] I 

p A L  

e = -- - [13e] 
P ULS. UGS 

PL PG [13q 

The solution for to is 

to = (ak - bi) +_ x / (a  2 - c)k  2 - b 2 + dk 4 + (ek - 2abk )i .  [14] 

The steady-state solution is unstable whenever the imaginary part of  co in [14], namely tol, is 
negative, leading to exponential growth of  the perturbed variable, /~L- The amplification factor 
is - to l -  

For the case of  inviscid flow, a simple expression for to is obtained: 

poU  /(PL PL UL + _ _  PLPo (UG -- UL) 2 
to HL HG PG)g HLHG ak2 [15] C - - ~ =  + --  + - -  , 

where HE = AL/A~ and HG = AG/A'G; C is the wave velocity and k is the wavenumber. As long 
as the term in the square root is positive, the amplification factor in this case is 0. When the square 
root is negative, two conjugate solutions for the imaginary parts exist. The second solution, namely 
the one with the negative sign, is the one that contributes to the instability. 

For the viscous case, the solution for to can be expressed conveniently in a polar form: 

(')1 to, = (ak - bi) + ~ e x p  i~a rc tan  ~ [16a] 

and 

{1[ ]} 
to2 = (ak - bi) + ~ exp i F arctan + 2n [16b] 

where 0t = (a 2 -  c )k2+  dk 4 -  b 2 and ~ = ek - 2 a b k .  The negative value of  the imaginary part of  
[16a, b] is the amplification factor. 

The condition for marginal stability can be obtained from [12] for the special case where COl, the 
imaginary part, equals 0. This leads to the following stability criterion for the viscous case: 

e _ a  - ( a  2 - c ) - d k  2 < 0 .  [17] 

Substituting the value of  a 2 -  c from [13] into [17] yields 

(Cv_Civ)2_~ PLPG (UG_UL)2 pL--p._____._~Ggcosfl A o A k2<0"  [18] 
p2RL RG p A'L p A L  
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The last three terms on the LHS of  [18] can be observed as the well-known KH instability of 
the interface of  one-dimensional flow with no viscous effects on the stability. The first term is the 
additional effect of the shear stresses, which tends to amplify any disturbance in the film thickness. 
Note that the fourth term, which is the contribution of the surface tension, is the only term that 
depends on the wavelength. For  long waves this term approach zero and it does not affect the 
neutral stability criterion that should apply to all wavelengths. 

The critical wave velocity on the inception of  instability, Cv, obtained from [12] for to, = 0, equals 
(e/2b): 

Cv = e = Vts. Vos [19] 

The dispersion equation for the IKH analysis is obtained from [12] with e = 0 and b = 0. The 
critical wave velocity in this case, Cw, is equal to [13a], namely: 

PL UL RG -Jr" RG UG RL 
Cjv = a - [20] 

pL RG + pGRL 

Thus, the first term in the KH stability criterion [17], that results from considering the shear stresses, 
is related to the difference between the wave velocity obtained from the VKH theory and the wave 
velocity for the inviscid case, on the inception of  instability. 

In this work the shear stress ZL, ZO and zi are evaluated as follows: 

RL2 U2L [21] TL =fL -- , 

ZG =fG - - P °  U~ [22] 
2 ' 

and 

where 

and 

f p o ( U G  - U L ) I U o  - ULI 
•i ~ " [23] 

fL = CL (DL UL~ -n [24a] 
\ V L /  

fG = CG(DGUG~ ". 
\ V G /  

D E and DG are the hydraulic diameters, evaluated in the following manner: 

[24b1 

4AG 
Do = SG "[- S-------~ " [25b] 

The coefficients Co and CL equal 0.046 for turbulent flow and 16 for laminar flow, n and m take 
the values of  0.2 for turbulent flow and 1.0 for laminar flow. The interfacial friction factor was 
assumed to have a constant value o f f i  = 0.014, as suggested by Cohen & Hanrat ty (1968) for 
stratified wavy flow, or fi = f o  when fo  > 0.014. 

and 

4AL 
DE -- [25a] 

SL 
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RESULTS AND DISCUSSION 

Figure 1 compares the results of the neutral stability criterion for stratified flow obtained by the 
VKH analysis [18] and the IKH approach ([18] without the first term). The calculations were made 
for the case of air-liquid (of water density) in a 5 cm horizontal pipe. It can be seen that for low 
viscosities the IKH analysis overpredicts considerably the viscous results. However, as the liquid 
viscosity increases the contribution of the term (Cv - Civ)2 in [18] diminishes and for high viscosity 
both approaches yield almost the same results. 

The fact that the results obtained by the VKH analysis, which takes into account the shear 
stresses, are different from those using the IKH approach at low viscosities, while the two 
approaches yield almost the same results at high viscosities is indeed puzzling. 

In order to see the reason for this anomaly, we consider the behavior of the amplification factor 
at various flow conditions, as obtained by the two analyses. 

The rate of amplification is examined along line a-b in figure 1. Point (a) is the intersection point 
with the VKH neutral stability curve, while point (b) is the intersection with the IKH neutral 
stability curve. 

The dispersion equation [12] yields two solutions for o9i. Positive or zero solutions indicate stable 
flow. For the VKH analysis, toll is always positive, while oh2 changes sign from positive (stable flow) 
below point (a) to negative (unstable flow) for ULS above point (a). For the IKH analysis, t~l~ and 
(/)12 are zero for ULS below point (b). Above point (b) ~Ol2 is negative (unstable) and ~Oll is the positive 
conjugate solution for rOlE. The value of -0912 is the rate of amplification of the disturbance and 
is illustrated in figure 2 as a function of the wavelength, for a constant gas flow rate (Ucs = 5 m/s) 
and at various liquid flow rates (along line a-b in figure l). The results obtained for the two analyses 
(VKH and IKH) are almost the same and the results of the solutions are indistinguishable in this 
figure (although the neutral stability criterion is quite different). A scaled-up picture of the two 
solutions is shown in figure 3 to show the behavior at low amplification rates. In this figure the 
details around the conditions of neutral stability can be seen. For liquid flow rates below point 
(a) (ULs = 0.1 m/s), --0912 is negative for all wavelengths according to the VKH analysis, namely 
the flow is stable. For ULS between points (a) and (b), 0.15 < ULS < 0.6 m/s, --~Ol2 is positive with 
very low absolute values and only at ULS = 0.6 m/s, where the flow becomes unstable also according 
to the inviscid analysis, does the rate of amplification become meaningful. Stated differently, under 
the flow conditions where the IKH analysis indicates a zero rate of amplification, the VKH analysis 
yields a transition from a negative to a positive value of -oJi2 with absolute values that are close 
to zero. Only at conditions where the IKH analysis indicates unstable flow is the rate of 
amplification obtained by the VKH analysis substantial. 
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Figure 1. Effect of liquid viscosity on the VKH and IKH neutral stability criteria. Air-liquid, atmospheric 
pressure, horizontal pipe, D = 5 cm. 
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Figure 2. Amplification factor for air-water at UGS = 5 m/s. 

.2 

A convenient method for comparing the amplification factor of  the two solutions with respect 
to the flow rates is to look at the amplification factor at a certain wavelength. This wavelength 
may be chosen arbitrarily. In this work we chose to compare the solutions at the wavelength which 
yields the maximum rate of amplification. Figure 4 shows the maximal rate of  amplification at each 
liquid flow rate for a constant gas flow rate. The results are given for a wide range of  liquid 
viscosities. It can be clearly seen, again, that from this point of  view the stability behavior of  the 
system is almost the same according to the two KH analyses. For  each liquid viscosity under 
consideration both analyses yield almost the same results and the amplification factor for the IKH 
analysis is, again, indistinguishable from that for the VKH analysis. A careful examination reveals, 
however, that there are differences which are only apparent at a very low amplification factor. 

For the inviscid case the amplification factor is exactly zero up to the point where the liquid velo- 
city is sufficiently large and the amplification curve maintains a clearly visible positive slope. This 
is the neutral stability point for the IKH analysis. The behavior of the amplification factor for the 
VKH analysis, although it looks the same in figure 4, is however different. It is not zero for a low 
liquid flow rate but rather it is negative for a very low liquid flow rate and becomes positive for 
an increasing liquid flow rate. The point where the amplification factor changes sign is the neutral 
stability point for the VKH analysis. This fact cannot be observed in figure 4, since in the region 
of changing sign the amplification factor is very small and very close to zero. Therefore the results 
for the VKH analysis look the same as those for the IKH analysis. This point of neutral stability 
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Figure 3. Scale-up amplification factor for air-water at UGs = 5 m/s. 
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Figure 4. Effect of  liquid viscosity on the amplification factor, Uos = 5 m/s. Air-liquid, atmospheric 
pressure, horizontal pipe, D = 5 cm. 

due to the VKH analysis is designated by arrows in figure 4. For example, for a viscosity of 100 cP 
the neutral VKH point is at ULS --~ 0.04 m/s, whereas the IKH neutral stability point is at 0.08 m/s. 
Thus, although the general behavior of the IKH and VKH analyses is similar with respect to the 
value of the amplification factor, they behave differently near the zero amplification factor. As a 
result, the neutral stability point for the IKH and VKH analyses is not the same. 

An interesting point to observe is the effect of viscosity on the location of the neutral stability 
points. One would expect that as the viscosity decreases the VKH analysis would approach the IKH 
results. Indeed, for low viscosity, the amplification factor for the low liquid flow rate approaches 
the zero value, as in the IKH analysis. But at the same time, the exact point of changing sign, i.e. 
the neutral stability point, moves to the "left" compared to the IKH neutral stability point. On 
the other hand, for high viscosities the two neutral points are at almost the same location. Thus 
(see figure 4), the neutral stability point for 1000 cP for both cases is at ULS ~-- 0.008 m/s. For 100 cP 
the neutral stability points are at ULS ~ 0.04 and 0.08 m/s. For viscosity < 1 cP, the VKH neutral 
stability point stays at ULS -- 0.15 m/s, while the IKH neutral stability point moves to a higher liquid 
flow rate as the viscosity decreases. Thus, it is clearly seen that the neutral stability points for the 
VKH and IKH analyses are farther apart for low viscosity than for high viscosity, giving the 
impression that the IKH analysis is similar to the VKH analysis for high viscosity but not for low 
viscosity. 

Physical Interpretation 

The physical interpretation of the results of the aforementioned analysis is not at all straightfor- 
ward. The key question is how to interpret the behavior in the unstable regions due to both the 
IKH and VKH analyses. Do these instabilities result in a transition to slug flow, annular flow or 
just cause the interface to be wavy?! 

As is well-known, the IKH instability does not predict well the transition boundary from 
stratified flow. The stable region predicted by the IKH analysis is larger compared with the 
experimental data. As a result, a few attempts to use this type of analysis required the insertion 
of some correction factors to account for this discrepancy (Kordyban & Ranov 1970; Taitel & 
Dukler, 1976; Kordyban 1977; Mishima & Ishii 1980). 

Lin & Hanratty (1986), Wu et al. (1987) and Crowley et al. (1992) used the VKH analysis for 
the prediction of the transition boundaries from stratified flow and found good agreement with 
the data for the case of a low void fraction. On the other hand, Hanratty (1983) and Andreussi 
et al. (1985) indicated that the VKH analysis can be used successfully to explain the transition to 
roll waves for the case of a thin liquid level: namely, the unstable infinitesimal wave grows, due 
to this instability to a large-amplitude wave of the order of the liquid film (roll waves). Barnea 
(1991) adopted this general appraoch and gave a complete quantitative description for the behavior 

MF 1914~H 
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of the interface in the various unstable regions. It was shown that the neutral stability condition 
of the VKH analysis is not directly associated with the transition to slug or annular flow but rather 
to an unstable interface with roll waves. Whenever the liquid supply in the film is large enough 
(hL/D > 0.5) to provide the liquid needed to bridge the pipe, the unstable region becomes slug flow. 
For hL/D < 0.5, either roll waves or annular flow may exist. In order to obtain annular flow, the 
upper part of  the pipe should be wetted also under conditions of high void (low liquid level). 
It occurs when the suction effect of  the pressure generated over the wave by the Bernoulli effect 
overcomes the stabilizing influence of  gravity. This effect is in phase with the wave height and grows 
unboundedly until the upper part is wetted. Barnea (1991) suggested that since this description is 
consistent with the IKH analysis, it is suggested that the IKH analysis is also valid when the waves 
become finite. 

Thus, two regions of  instability are identified. The region bounded between the VKH and IKH 
neutral stability lines and the region "outside" the IKH neutral stability curve. The first region is 
associated with large-amplitude roll waves for hL/D < 0.5 and slug flow for hL/D > 0.5. For the 
region outside the IKH neutral stability line the IKH instability will result in either slug flow for 
hL/D > 0.5 or annular flow for hL/D < 0.5. 

The present work supports this general explanation. It further identifies the region between the 
VKH and IKH neutral stability lines with the region of  low amplification factor. Within this region 
the Bernoulli effect is small and the instability is caused by the viscous effect (the two first term 
in [18]). In this case the amplification factor is of a lower order which does not lead to an 
unbounded growth. On the other hand, the region of  IKH instability is associated with very high 
amplification factor (by both analyses), which results in exponential growth that always leads to 
the transition from stratified flow. 

Referring now to figure 5, the zone bounded by the VKH neutral stability curve is a zone of 
stable stratified flow (stratified smooth or stratified with small-amplitude waves). The region 
between the VKH ( ) and the IKH ( - - - )  curves is a region of  either roll waves or slug flow. 
The curve hL/D = 0.5, is a dividing line between slug flow to the "left" and large-amplitude roll 
waves to the "right".  At a relatively high liquid rate these large-amplitude waves were termed 
pseudo-slug (Lin & Hanratty 1987), wavy annular (Barnea et al. 1980) or proto-slug (Nicholson 
et al. 1987). At a low liquid flow rate this is a transitional region to annular flow (which was 
identified as wavy by some researchers and as annular by others). The region outside the IKH curve 
is either in slug flow, for the region hD/D > 0.5, or annular flow, for the region where hL/D < 0.5. 
Thus, a complete behavior is determined by three demarcation lines: the neutral VKH line, the 
neutral IKH line and the curve hL/D = 0.5. Note again that the IKH neutral stability line is at the 
same location as where the VKH analysis shows a sharp increase in the amplification factor. Thus, 
along line a-b, the flow changes from stable stratified flow to large-amplitude roll waves (usually 
referred to as wavy annular, proto- or pseudo-slug in this region) and then above hL/D = 0.5 the 
flow pattern is slug flow. Along the line c~l,  the flow changes from stable stratified flow to annular 
flow through a narrow region of  large-amplitude waves. 
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Figure 5. Flow pattern prediction by the VKH and IKH analyses. Air-water, atmospheric pressure, 
horizontal pipe, D = 5 cm. SL--slug; ST--stratified; RW--roll  waves; A--annular.  
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Figure 6. Flow pattern transition boundaries for upwards 
inclined flow, ,8 = 0.25 °. Air-water, atmospheric pressure, 
D = 5 cm. SL--slug; ST--stratified; RW--roll waves; A - -  
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Figure 7. Amplification factor for upwards inclined flow, 
Uos = 10 m/s. Air-water, atmospheric pressure, ~ = 0.25 °, 

D = 5cm. 

A similar behavior regarding the stability characteristic of  the system is obtained for the case 
of  inclined stratified flow. For  upwards inclined flow the stable area predicted by the VKH analysis 
is bounded by a bell-shaped curve on the ULS VS UGs plot (figure 6), while the IKH neutral stability 
curve shows a totally different behavior. The maximum amplification rates along a constant gas 
flow rate (line a-b) and along a constant liquid flow rate (line c~l-e)  are illustrated in figures 7 
and 8, respectively. It is shown again that, although the neutral stability curves obtained by the 
two analyses are quite different, the amplification curves are very similar. Figure 7 shows how the 
maximal amplification factor changes along the line a-b. The results are similar to the horizontal 
case (figure 4). Figure 8 shows the maximal amplification rate for increasing gas flow rate. As can 
be seen, the amplification factor is positive and small for a low gas flow rate, it becomes negative, 
i.e. a stable interface, for the region from point c to d and thereafter a sharp increase in the 
amplification factor is shown where the flow become unstable due to IKH analysis (point e). 

Figure 9 is a typical representation of  the stability behavior of  downward inclined stratified flow. 
The amplification factor curves for the two analyses yield almost the same results. However, along 
the region where the IKH analysis predicts zero amplification (namely, neutral stability conditions), 
the flow is unstable according to the VKH analysis with a very small amplification rate. This means 
that, for this case, the neutral stability line due to the VKH analysis is absent and the transition 
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Figure 8. Amplification factor for upwards inclined flow, ULS=0.01 m/s. Air-water, atmospheric 
pressure, # = 0.25 °, D = 5 cm. 
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Figure 9. Amplification factor for downwards inclined flow, ULs = 0.1 m/s. Air-water, atmospheric 
pressure, / / =  - 5 °, D = 5 cm. SL--slug; ST--stratified; RW--roll waves; A--annular. 

from stratified flow is controlled only by the IKH analysis and ht/D = 0.5. The whole region 
bounded by the aforementioned lines is, therefore, a region of stratified roll waves. 

Note that Andritsos & Hanratty (1987), using a two-dimensional, inviscid analysis for a flat 
geometry, also related the wave type to the amplification factor. This approach and interpretation, 
however, is quite different from the one presented here. 

SUMMARY AND CONCLUSIONS 

(1) This work addresses the dilemma that the neutral stability lines based on the viscous 
complete two-fluid model equations and the approximate inviscid analysis lead to similar 
results for high viscosity but quite different results for low liquid viscosity. This fact seems 
to be unreasonable since one would expect the VKH analysis to approach the IKH case for 
low viscosity. 

(2) It is shown that the results for the amplification factor based on the IKH and VKH analyses 
are almost the same. 

(3) For increasing liquid flow rates or increasing gas flow rates the amplification factor for the 
IKH analysis is zero up to a point, where after it grows very sharply to very high value. This 
point is the neutral stability point for the IKH analysis. 

(4) In the range where the IKH analysis predicts zero amplification, the VKH analysis predicts 
a very low amplification factor. This amplification factor can be positive (unstable) or 
negative (stable). The transition from negative to positive amplification is the neutral stability 
line for the VKH analysis. 

(5) In spite of the fact that the general behavior for the amplification factor for the VKH and 
IKH analysis is similar and that the sharp increase in amplification factor occurs almost at 
the same conditions, the neutral stability points are quite different for low viscosity fluids. 

(6) The results obtained in this analysis confirm the interpretation of Barnea (1991). The region 
of low amplification, i.e. the region between the neutral stability line of the VKH analysis 
and that of the IKH analysis, is a region of roll waves or slug flow (depending on the liquid 
holdup). The region of high amplification, i.e. the region above the IKH neutral stability 
line is a region where the flow will be either slug or annular. 
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